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AT A GLANCE

1. Brief Theory

Each chapter comprises brief theory
covering all the topics. It is very explicit
and provides a clear understanding
of the topics.

2. Problem Solving Method

a step by step approach for
problem solving procedures.

3. Solved Example (Multiple Choice)
Each topic is followed by a Multiple choice
solved example which has a significant
relevance with theory.

674 CIRCUIT ANALYSIS USING LAPLACE TRANSFORM

Initial current through inductor is i, (07) = 2 A.
Hence (C) is correct option.

14.6 CircuIT ANALYSIS IN THE s-DOMAIN

All the circuit analysis techniques that we have studied for
pure resistive networks may be used in s-domain analysis.
The node voltage method, mesh current method, source
transformations, and Thevenin-Norton equivalents are all
valid techniques in the s-domain. These can be applied
using same methodologies as we discussed for resistive
networks.

The step-by-step procedure of circuit analysis in the
s-domain is given below.

METHODOLOGY
1. Draw the circuit into s-domain by substituting

an s-domain equivalent for each circuit element.
The inductors and capacitors are replaced by their
equivalent discussed in previous section.

2. Apply any circuit analysis technique to obtain the
desired voltage or current in the s-domain.

3. Take inverse Laplace transform to convert the
voltages and/or currents back to the time domain.

For ¢ > 0, the voltage v,(¢) in the following network, will

be

(A) v,() =2(1— e u() V 1u(t)
(B) v,(t) = (= 8+ 10e ™) u(t) V

(C) v,(t) = (8 —10e ™) u(t)V

(D) v, () =2(1—5e “Yu(t) V

Step 1: Taking zero initial condition and transforming the

circuit into s-domain as shown in figure. 4, C
57

Step 2: Applying mesh analysis to the circuit
Mesh 1: Li(s) =—4/s

A

CHAPTER 14

Page 674, Chapter-14, Circuit Analysis Using Laplace Transform




Thus, a linear circuit is one whose output is linearly
related (or directly proportional) to its input. For example,
consider the linear circuit shown in figure 5.2.1. It is excited
by an input voltage source V;, and the current through
load R is taken as output(response).

Suppose V, =5V gives I=1A. According to the
linearity principle, V; =10V will give I=2A. Similarly,
I=4mA must be due to V, = 20 mV. Note that ratio V;/I
remains constant, since the system is linear.

»EXAMPLE

For the circuit shown in figure, some measurements are
made and listed in the table below.

I
—

Linear
resistive
network

2.9V

If V,;=10V and [, V, then the value of I will be
(A) 1.6 A
(B) 4.4 A
(C) 32A
(D) 6.4 A

‘We know that the relationship between

circuit, no
independent
sources

Fig 5.2.1 A linear circuit,

1A 3A

Page 181, Chapter-5, Circuit Theorems




PRACTICE PRACTICE

mca 8.1 The current in an RLC circuit is described by the equation mcas.21  The differential equation for the circuit shown below is
di(t) | di(t ’
#(,)+8%+161(t) =0 20 Lub o
What is the natural frequency for the circuit ?
(A) —2rad/sec (B) —8rad/sec () e 100 ©
(C) —4rad/sec (D) —12rad/sec
mcas.1.2  The current in a series RLC' network is given by " ’ S N 10
i) = AV 4 Be', A& B are constants (A) u" )+ 300011, (f) +1.02 x lOgv(t) = 10£1r,(t)
The damping factor will be equal o (B) v )+ 1000y () +1.02 X 10°0(t) = 10%,(1)
(4) 268 (B) 06 $ 20001 200 = w9
(©) 12 (D) 1.34 B )
D) v (t)+2v (1)
mca 8.3 A series RLC circuit has R =4Q and C'=2F. The value of L so that the circuit 710 10°
is critically damped, will be mcas.22 In a parallel RLC circuit the voltage across inductor and current through the
(A)4H (B) 2H capacitor are given as
(C) 16H (D) 8H 20¢ " cos2t — 80¢ 'sin2t) V
—Ge cos2t+ Te sin2t) A
‘What are the values of parameters R, L and C' 7
Statement for Questions 4-6 : (A) R=10Q, L=1H, C=50mF
A parallel RLC circuit has the following parameters; R =1k, L =125H, and (B) R=5Q, L=2H, C=25mF
C'=2yF. (C) R=333Q, L=133mH, C=37.5mF
mcas.1.4  What type of damping does the circuit exhibit ? (D) R=5Q, L=1H, C=50mF
(A) critical damping (B) under damping

+1.98v(t) = v.(t)

X . mcas.2.3  In the following network, the switch opens instantaneously at ¢ =0. The current
(C) over damping (D) none of these i(t) for t> 0 will be

mcas..5  What value of R will cause a damped frequency of 120 rad/sec ?
(A) 3.12k0 (B) 156k
(C) 6.41kQ (D) 12.82kQ

20 130

mcas.1.6  What value of R will result in a critically damped response ?
(A) 2kQ (B) 25kQ
(C) 5kQ (D) 1.25kQ
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180 CIRCUIT THEOREMS

5.1 INTRODUCTION

In this chapter we study the methods of simplifying the
analysis of more complicated circuits. We shall learn some
of the circuit theorems which are used to reduce a complex
circuit into a simple equivalent circuit. This includes
Thevenin theorem and Norton theorem. These theorems
are applicable to linear circuits, so we first discuss the
concept of circuit linearity.

5.2 LINEARITY

A system is linear if it satisfies the following two
properties
Homogeneity Property :
The homogeneity property requires that if the input
(excitation) is multiplied by a constant, then the output
(response) is multiplied by the same constant. For a
resistor, for example, Ohm’s law relates the input I to the
output V,

V =1IR
If the current is increased by a constant k, then the voltage
increases correspondingly by k&, that is,

EIR = kV

Additivity Property :
The additivity property requires that the response to a
sum of inputs is the sum of the responses to each input
applied separately. Using the voltage-current relationship
of a resistor, if

Vi=ILR (Voltage due to current I;)
and Vo = LR (Voltage due to current I)
then, by applying current (I, + L) gives

V: (Il—f— IQ)R - ]1R+ IQR
=Vi+ W

These two properties defining a linear system can be
combined into a single statement as

CHAPTER 5



CHAPTER 5 CIRCUIT THEOREMS

For any linear resistive circuit, any output voltage or
current, denoted by the variable y, is related linearly to
the independent sources(inputs), i.e.,

Y=+ G+ ...+ a2,
where 1z, 1, .... 2, are the voltage and current values of
the independent sources in the circuit and a; through a,,
are properly dimensioned constants.

Thus, a linear circuit is one whose output is linearly
related (or directly proportional) to its input. For example,
consider the linear circuit shown in figure 5.2.1. It is excited
by an input voltage source V,, and the current through
load R is taken as output(response).

Suppose V,=5V gives I=1A. According to the
linearity principle, V=10V will give I= 2 A. Similarly,
I'=4mA must be due to V, = 20 mV. Note that ratio V, /I
remains constant, since the system is linear.

For the circuit shown in figure, some measurements are
made and listed in the table below.

O

Fig 5.2.1 A linear circuit

Linear
circuit, no
independent
sources

181

i]

2

I
° V. I

Linear

o resistive 1.|7V 1A
K C—) network RL;
2.9V 3A
IS
()
/

If V,=10V and I, =4V, then the value of I; will be
(A) 1.6 A
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Circuit is linear, so the linear equation relating inputs V;
and I, to output [ is given by

I, = AV, + BI,

now, using the values of table
1=7A+3B (1)
3=9A+8B ..(i1)

Solving equation (i) and (ii)
A=04, B=—06

So, I, =0.4V,—0.61,
For V,=10V and I, =4V
I, = 0.4(10) — 0.6(4)
—4-24 =16A

Hence (A) is correct option.

The linear network in the figure contains resistors and
dependent sources only. When V,=10V, the power
supplied by the voltage source is 40 W. What will be the
power supplied by the source if V,=5V ?

(A) 20 W
(B)

(C) 40 W
(D) can not be determined

For, V, =10V, P=40W
_ P _40 _
So, IS—VS—10—4A
Now, Vi =5V,so IJ=2A (From linearity)

New value of the power supplied by source is

P/ =V/[[=5x2=10W
Note: Linearity does not apply to power calculations.
Hence (B) is correct option.

NS
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In the circuit shown below, the value of current I will be
given by

AN AN W\,V

We solve this problem using linearity and assumption that
I=1A.

N 14 ji=1A

+
ng tDv. V1§4Q §29

Vi =4l+2] =6V (Using KVL)
L=15+1="+1="%41=25A(Using KCL)
Vo =4L+ Vi =4(2.5)+6=16V  (Using KVL)
L+L=h (Using KCL)
Vo,
=g ="
L, =10+25=35A
When I,=35A, I =1A
But I, = 14 A, so 1:3'—15><14:4A

Hence (C) is correct option.

183
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In the circuit, what are the values of I for V, =36V and
Vi, ="T2V respectively ?

(A) 36 A, 18 A (B) 18A, T2A
(C) 4A, 8A (D) 36 A, 9A

Applying nodal analysis at node a

V.~ 36 V. o_
I CES
3V,—108 +12V,+2V, =0
5V, + 12V, = 108 ()
1

= 2—4—1(‘/‘1) (Using voltage division)
Vo =3V,
Substituting V, = 3V, into equation (i),
5(3V,)+ 12V, = 108

27V, =108
V., =4V
So, current 1 :%:%:4A

Since the circuit is linear, So when V, = 72V, then

L =4x2=8A
Hence (C) is correct option.

5.3 SUPERPOSITION

It states that, in any linear circuit containing multiple
independent sources the total current through or voltage
across an element can be determined by algebraically
adding the voltage or current due to each independent
source acting alone with all other independent sources
set to zero.

An independent voltage source is set to zero by
replacing it with a 0 V source(short circuit) and an
independent current source is set to zero by replacing it with
0 A source(an open circuit). The following methodology

CHAPTER 5
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illustrates the procedure of applying superposition to a
given circuit

METHODOLOGY
1. Consider one independent source (either voltage or

current) at a time, short circuit all other voltage
sources and open circuit all other current sources.

2. Dependent sources can not be set to zero as they
are controlled by other circuit parameters.

3. Calculate the current or voltage due to the single
source using any method (KCL, KVL, nodal or
mesh analysis).

4. Repeat the above steps for each source.

5. Algebraically add the results obtained by each
source to get the total response.

In the circuit of figure, the voltage drop across the resistance

185

R, will be equal to

38 volt 16v()

The circuit has three independent sources, so we apply
superposition theorem to obtain the voltage drop.

Due to 16 V source only : (Open circuit 5 A source and
Short circuit 32 V source)

Let voltage across R, due to 16 V source only is V;.

16 Q2

+
16 VC_D V1§16§2 16V

24 Q 24 Q

16 O
AN
R3
R2§169 C 5A

Rl

AN

24 O

80
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Using voltage division
___8 -
i=—gy1gl6) =—4V
Due to 5 A source only : (Short circuit both the 16 V and 16 O
32 V sources) AN

Let voltage across R, due to 5 A source only is V5. .
Vo =(240Q1/16Q2(|]16Q) x5 )
=6 X 5 =30volt

+
V2§16§2 C

Due to 32V Source Only : (Short circuit 16 V source and
open circuit 5 A source)
Let voltage across R, due to 32V source only is Vj

24 Q

16 Q2 16
l NN A AAY
I V3+§16 9) C_‘ 32V V3+§ 9.6 Q C_) 32V
e T
24 Q

Using voltage division

_ 96 _
Vi =15406032) =12V

By superposition, the net voltage across R is
V=V+W+V
=—4+30+12

= 38 volt
Hence (B) is correct option.

12V

/AR

/
In the circuit shown in the given figure, power dissipated 8 0
in 4 () resistor is
(A) 225 W (B) 121 W 59 CD
(C) 9W (D) none of these 18 V(—)

10 Q

First, we find current I in the 4€) resistors using
superposition.

Due to 18 V Source Only : (Open circuit 4 A and short
circuit 12 V source)
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P

|||—1

L =18/4=45A
Due to 12V Source Only : (Open circuit 4 A and short

circuit 18 V source)

12V
O
N\
8 Q
o :
I 5Q
10 ©

W

$io

L=—12/4=—3A

CIRCUIT THEOREMS

187

sv ()

S50
Se

§4Q

$h

12V
)
N\
8 Q
AN
{5
5Q
4Q§
10 ©

Due to 4 A Source Only : (Short circuit 12V and 18V

P

$io

sources)
8 Q

AN

05 (Dia
[ ]
®

10 ©
a
I3 - 0

So,

50

8Q§

V

(Due to short circuit)

I =5L+L+6L=45-3+0=15A
Power dissipated in 4 € resistor

Pio=Tr4)=(15)°%x4=9W
Hence (C) is correct option.
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1
For the following circuit, value of current I is given by — AMA AN
(A) 0.5A

We obtain I using superposition. Note that while applying
superposition we do not set dependent source to zero. !
Due to 24 V source only: (Open circuit 6 A) -, 60 3

) NN NN
Applying KVL l
24 — 61, — 31, — 31, =0 21v(©) 3,
_ 24
Due to 6 A source only: (Short circuit 24 V source)
: Lo 60 30 015
Applying KVL to supermesh AAA AN
—6L—-3(6+L5L)—3L=0 S
I 4 |
6L+ 18 + 3L+ 31, = 0 | Doa ;<f>312
__18__3 PR R
L =— 127 2 A
Supermesh
From superposition, I =1I+1
_9_3_1
- 272 A

Hence (A) is correct option.

5.4 SOURCE TRANSFORMATION

It states that an independent voltage source V;, in series

with a resistance R is equivalent to an independent

current source I, = V,/R, in parallel with a resistance R.
or

An independent current source I, in parallel with a

resistance R is equivalent to an independent voltage

source V, = I, R, in series with a resistance R.

Figure 5.4.1 shows the source transformation of an
independent source. The following points are to be noted
while applying source transformation.
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A\N\N——0 o
RS
vO O
o o
V.= LR, L=V,/R,

Fig 5.4.1 Source Transformation of independent sources

1. Note that head of the current source arrow corresponds
to the +ve terminal of the voltage source. The following
figure illustrates this

AN o
RS
' i@ 3
e} O
V., =1LR, L=V/R,
Fig 5.4.2

2. Source conversion are equivalent at their external
terminals only i.e. the voltage-current relationship
at their external terminals remains same. The two
circuits in figure 5.4.3a and 5.4.3b are equivalent,
provided they have the same voltage-current relation

at terminals a-b

2 a
2Q l 1 l L l I l I
10V §5Q §5Q sa(D zﬂg §5Q §5Q
b b
(a) Circuit with a voltage source (b) Equivalent circuit when the voltage
source is transformed into current

source

Fig 5.4.3 An example of source transformation

3. Source transformation is not applicable to ideal

189
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voltage sources as R, = 0 for an ideal voltage source.
So, equivalent current source value I,= V,/R — oo.
Similarly it is not applicable to ideal current source
because for an ideal current source R,= o, so
equivalent voltage source value will not be finite.

8 Q
The value of current I in the circuit, is equal to I 39 —AA\—
(A) 2/TA —AW ~
- N
(B) 14 6V<_> §6Q 3 A §4Q
(C) 2A
(D) 4A

Using source transformation, we can obtain I in following
steps.

I 30 g 24V I 30

—> —>

A'A% AA'A% + AA'A%

GVCD 6Q§ 40 C_‘ 6V 6Q§ 129§ 2 A ,D

30 4Q I 3Q

_6+8_14 _ o,

Hence (C) is correct option.

What is the value of current I in the circuit shown below ?
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J 40V
A=
6 - 4 Q
48 V g 30 4Q§ 24V
(A) 8.5A (B) 4.5A
(C) 15A (D) 5.5A

Using source transformation of 48 V source and the 24 V
source

8ACD §69 §SQ 4Q§ 4Q§ G)GA

Writing KVL around anticlock wise direction
—12—-271+40—-471—-271—-16 =0

12—-81 =0
_12
I = ] =15A

Hence (C) is correct option.
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5.4.1 Source Transformation For Dependent
Source

Source transformation is also applicable to dependent
source in the same manner as for independent sources.

It states that an dependent voltage source V, in series
with a resistance R is equivalent to a dependent current
source I, = V, /R, in parallel with a resistance R, keeping
the controlling voltage or current unaffected.

or,
A dependent current source I, in parallel with a resistance
R is equivalent to an dependent voltage source V, = I, R
, in series with a resistance R, keeping the controlling
voltage or current unaffected.

Figure 5.4.4 shows the source transformation of an

dependent source.

AMA——o 0
R
RO i §R
O O
V,=1LR L=V,/R

Fig 5.4.4 Source transformation of dependent sources

The value of current I, in the following circuit, is equal

CHAPTER 5

(A) 3.0A (B) 4.21 A Vo
(C) 2.35A (D) 6.15 A sa(D §1o a

&L

We know that source transformation is also applicable to
dependent sources. So, we transform the dependent voltage
source into equivalent dependent current source
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8AC) 10Q§ ‘l <;>2I,. SACD 1OQ§ 41 §5Q <¢>%II

Now using current division

10+5
_1/q 2
Im_3<8 5@)
27 _
3L+321 =8
%I$:8:>Iz:2.35A

5.5 THEVENIN’S THEOREM

It states that any network composed of ideal voltage and
current sources, and of linear resistors, may be represented
by an equivalent circuit consisting of an ideal voltage
source, Vg, in series with an equivalent resistance, R, as
illustrated in the figure 5.5.1.

1 I
a4 —p a —p
° AAAY °
Ry,
Linear — a
circuit 4 Load - C_) Vi vV Load
b b
Thevenin’s
equivalent

Fig 5.5.1 Illustration of Thevenin theorem

Where Vi, is called Thevenin’s equivalent voltage
or simply Thevenin voltage and Ry, is called Thevenin’s
equivalent resistance or simply Thevenin resistance.

The methods of obtaining Thevenin equivalent voltage and
resistance are given in the following sections.
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5.5.1 Thevenin’s Voltage

The equivalent Thevenin voltage (VTh) is equal to the
open-circuit voltage present at the load terminals (with
the load removed). Therefore, it is also denoted by V.

a RTh a
+ — +
Linear 1=0
circuit Ve — Vo C_) Vie=Vn,
_ _
b b

Fig 5.5.2 Equivalence of open circuit and Thevenin voltage

Figure 5.5.2 illustrates that the open-circuit voltage,
V,., and the Thevenin voltage, Vz,, must be the same
because in the circuit consisting of Vy, and Ry, the voltage
V,. must equal Vg, since no current flows through Rz, and
therefore the voltage across Ry, is zero. Kirchhoff’s voltage
law confirms that

Vi = R (0) + Voo =V,

The procedure of obtaining Thevenin voltage is given

in the following methodology.

M ETHODOLOGY 1
1. Remove the load i.e open circuit the load terminals.

Define the open-circuit voltage V,. across the open
load terminals.

3. Apply any preferred method (KCL, KVL, nodal
analysis, mesh analysis etc.) to solve for V..

4. The Thevenin voltage is Vy, = V..

If a circuit contains dependent sources only, i.e. there
is no independent source present in the network then its
open circuit voltage or Thevenin voltage will simply be
Zero.

CHAPTER 5
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5.5.2 Thevenin’s Resistance

Thevenin resistance is the input or equivalent resistance
at the open circuit terminals a,b when all independent
sources are set to zero(voltage sources replaced by short
circuits and current sources replaced by open circuits).

We consider the following cases where Thevenin
resistance Ry, is to be determined.

Case 1: Circuit With Independent Sources only

If the network has no dependent sources, we turn off
all independent sources. Ry, is the input resistance or
equivalent resistance of the network looking between
terminals a and b, as shown in figure 5.5.3.

In the circuit shown below, Thevenin equivalent voltage

Linear circuit
(all independent
sources set to
zero)

195

Fig 5.5.3 Circuit for obtaining R,

1 kQ 1 kQ
and resistance seen at load terminal, are equal to AAN AN
(A) 6V, 5k (B) 24V, 5/3k2 L .
(C) 18V, 1kQ D) 12V, 2k0 Y D om@® o kgg

First we will find Thevenin equivalent across load terminals.
Thevenin voltage: (Open circuit voltage)
Remove the load R; and open circuit its terminal as

shown. Let open circuit voltage or Thevenin voltage is Vpy,
1 kO 1 kO 1 kQ
AN AN ANN—o

sv@® om® 20 v

Using source transformation

1 kQ 1 kQ
AN AN\N\N—o

18mACD gle CDGmA §2kQ Vi,

1 kQ
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1 kO 1 kQ 1kQ 1kQ  1kQ
M AMN—o —VW—o
24 mA ‘D g 1 kQ §2 kQ Vg, 24V 2 ng Vo
° °
Vi = 2—_?_2(24) (Using voltage division)
=12V

Thevenin resistance :

To obtain Thevenin resistance we set all independent
sources to zero i.e. we short circuit the 18 V source and
open circuit the 6 mA source as shown in figure below,

1 kQ 1 kO 1 k2 1 kQ
2A'A'A% l ANV ANWWN—o A\W\—o
1 RT}L RTh
2 ng -— 2 kQ§ §2 k) -—
[ ] T
O O

Thevenin resistance is the equivalent resistance seen at
load terminals.

Rm=1+2[]2=1+1=2kQ
Hence (D) is correct option.

24 Q
A AAY
The Thevenin’s equivalent of the circuit shown in the 12 Q 20 Q
figure is VWV VWV et
(A) 4V, 480 (B) 24V, 12Q 36VC> §6Q
(C) 24V, 240 (D) 12V, 120 T
ob
Thevenin voltage : (Open circuit voltage) 01 0
In the given problem, we use mesh analysis method to AN
obtain Thevenin voltage N\
, o 120 I, 200
I; =0 (a-b is open circuit) AN AN oa
+
Writing mesh equations
Mesh 1: 36 —12(L— L) —6(L— L) =0 NG A §69 AR
1 3
36 — 12+ 121, — 6L =0 (I;=0) ob
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31— 2L, =6 ()
Mesh 2: —241 — 20(L— L) — 12(L— I,) = 0
— 241, —20L— 12L+12, =0 (L =0)
141, = 31, ...(ii)
From equation (i) and (ii)
L=7/3A, L=1/2A
Mesh 3:
—6(L— 1) —20(L,— L) — Vi =0

—6[0 —g]— 20[0—%]— Vi =0
14+ 10 - VTh
Vi, = 24 volt

Thevenin Resistance :
To obtain Thevenin resistance we set independent source
to zero i.e. short circuit the 36 V source.

24 ) 24 )
AN AN
12 Q 20 20
AN AN o AN oa
¢ R R
gﬁg — §129 §69 7
[ ]
o Ob
24 Q
oa AN
20 Q 139\;\2, oa
RT}L
24Q§ -— B
Th
y S0 M
ob ob

Ry = (2044) || 24Q
Ro =249Q]249Q

RTh == 12 Q
Hence (B) is correct option.

197
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What values of Rz, and Vg, will cause the circuit of figure
(B) to be the equivalent circuit of figure (A) ?

a 4 Q RT}L a
6 Qg 30 40V §2 Q0 Vy 30
b b
Fig.(A) Fig.(B)
(A) 24Q, —24V (B)3Q,16 V
(C) 109,24V (D) 10Q, —24V

Thevenin voltage: (Open circuit voltage)
First we remove the load resistance (i.e open circuit the.
3 Q resistance) and obtain the open circuit voltage across

. 4Q
_ 6 . . e e . +
Vi = 671 T (—40) (using voltage division) 6 Qg v 0V
=— 24 volt T

Thevenin resistance :
Set all independent source to zero(short circuit 40 V source)

,é&,
Gﬂg lt&h I §29 GQg laﬁh’ §4Q
Tb ¢ Tb

6 X4

Hence (A) is correct option.

Case 2: Circuit With Both Dependent and Independent
Sources

Different methods can be used to determine Thevenin
equivalent resistance of a circuit containing dependent
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sources. We may follow the given two methodologies. Both

the methods are also applicable to circuit with independent

sources only(case 1).

Using Test Source

METHODOLOGY 2

1.

Set all independent sources to zero(Short circuit
independent voltage source and open circuit
independent current source).

Remove the load, and put a test source V., across
its terminals. Let the current through test source
is I.s. Alternatively, we can put a test source
I,y across load terminals and assume the voltage
across it is V4. Either method would give same
result.

Thevenin resistance is given by Ry, = Vi / Liest-

Using Short Circuit Current

Ry, =

open circuit voltage V..

~ short circuit current I,

METHODOLOGY 3

1.

Connect a short circuit between terminal a and b.
Be careful, do not set independent sources zero in
this method because we have to find short circuit
current.

Now, obtain the short circuit current I, through
terminals a, b.

Thevenin resistance is given as Ry, = V,. /I, where
V,. is open circuit voltage or Thevenin voltage
across terminal a,b which can be obtained by same
method given previously.

The Thevenin equivalent resistance between terminal a

and b in the following circuit is
(A) 22Q (B) 110
(C) 17Q (D) 1Q

Vie

=1V

199
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First we obtain Ry, using the methodology-3 which requires
calculation of Thevenin voltage and short circuit current.

V.. _ Open circuit voltage
I,. ~— short circuit current

Ry, =

Thevenin voltage: (Open circuit voltage V,,)

Using source transformation of the dependent source as
shown in figure

Applying KCL at top left node

o4 =Veo y —qa4v

6
Using KVL,
V,— 81—~ V. =0
144—0—144 _ ¢
2
V., =72V

Short circuit current (I.):
Applying KVL in the right mesh

V,

‘/z - 8]5(: - 7I - O
V. _
7 - 815(
er - 16Iac

KCL at the top left node
oq = Ve Voo Va2

6 g
_V.. V.
=515
1152
V=47V
_ Ve _ 1152 72
o =m0 A
Thevenin resistance,
Ry =Y = 12— 110

—_
[

ISC <

1
Hence (B) is correct option.

Alternate method : (Methodology-2)
We can obtain Thevenin equivalent resistance without
calculating the Thevenin voltage (open circuit voltage) as

CHAPTER 5

a,b
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given in methodology-2. Set all independent sources to zero
(i.e. open circuit current sources and short circuit voltage
sources) and put a test source V., between terminal a-b

as shown
Viest
RTh o [test
6-[test + 8-[test - % - V;fest = 0 (KVL)
Thus 147 8et _ =0 V, = 61
2 test — T — test
11[test = Viest
So, Ry, = View =11Q

I test

For the circuit shown in the figure, the Thevenin’s voltage 2V <i>

and resistance looking into a-b are
(A)2V,30Q (B)2V,20Q
(C)6V,—-9Q D)6V, —-3Q

Thevenin voltage (Open circuit voltage) :
Applying KCL at top middle node

Vi =2Ve . Vi _
g T 1=V
2V,
WJF%JFIZO (VTh:Vm) T<

-2V 4+ Vi, +6 =0 = Vp, =6 volt
Thevenin Resistance :
To obtain Thevenin resistance we follow the procedure
given in methodology-3.

_ Open circuit voltage _ Vy,

L, = Short circuit current I,

To obtain Thevenin resistance, first we find short circuit
current through a-b
Writing KCL at top middle node

3
2V, + V,+64+2V, =0
V, =— 6 volt

201

Ny

B _ 2V,
Vo2V Vg V0 R¢

o
3Q
ANWN—o a

+
1A Vi

ob
3Q

1.
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_Vi-0__6__
Isc - 3 -7 3 2A
Thevenin’s resistance, Ry = ‘;Th :—g =—30

Hence (D) is correct option.

Circuit Analysis Using Thevenin Equivalent

Thevenin’s theorem is very important in circuit analysis.
It simplifies a circuit. A large circuit may be replaced by a
single independent voltage source and a single resistor. The
equivalent network behaves the same way externally as the
original circuit. Consider a linear circuit terminated by a
load R, as shown in figure 5.5.5. The current [; through
the load and the voltage V; across the load are easily
determined once the Thevenin equivalent of the circuit at
the load’s terminals is obtained.

a B, a
+ l I, YWV + l 1
Linear N a
circuit Vi g E, — Vo <_> Vi g E,
b b

Fig 5.5.5 A circuit with a load and its equivalent Thevenin circuit

Current through the load Ry

Vi

L= Rpy+ Ry

Voltage across the load R;
Vi = Ryl = v,

Ry + Ry
411)
A
| A
In the following circuit, if R, =42, then the voltage V} . .
across the load resistance R; will be equal to > A() 29

(A) =10V (B) —20V
(C) 6.66 V (D) 40V
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We obtain Thevenin’s equivalent across load terminal.
Thevenin voltage : (Open circuit voltage)

Follow the methodology-1 to calculate the Thevenin voltage
across load resistance. Using KCL at top left node

5=1,+0
I, =5A
21, — 41, — Vp, =0 (Using KVL)
2(5) —4(5) = Vp
VTh —=— 10 volt

Thevenin Resistance :

Follow the methodology-3 to obtain the Thevenin resistance.
First we find short circuit current through a-b

Using KCL at top left node

5 :Ir+Isc

L=5-1
Applying KVL in the right mesh
2[,—41,+0 =0
I, =0
So, 5—1I,=0o0r I, =5A

Thevenin resistance,

RTh = ‘;Th’ :—% = — 2Q

Now, the circuit becomes as shown in figure

B R, . L
V= Vp <7Rm i RL) (Using voltage division)
_ 4 _
= (- 10)<T+4> R, =4Q

=—20V

Hence (C) is correct option.
5.6 NoRrTON’s THEOREM

Any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an
equivalent circuit consisting of an ideal current source, Iy,
in parallel with an equivalent resistance, Ry as illustrated
in figure 5.6.1.

203

41,

41

-
5AC> 20 ijsc
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1 I
a —» a —p
° °
Linear p—
circuit 4 [] Load - Iy CD RN§ V |:| Load
b b
Norton's
equivalent

Fig 5.6.1 Illustration of Norton theorem

Where Iy is called Norton’s equivalent current or
simply Norton current and Ry is called Norton’s equivalent
resistance. The methods of obtaining Norton equivalent
current and resistance are given in the following sections.

5.6.1 Norton’s Current

The Norton equivalent current is equal to the short-
circuit current that would flow when the load replaced
by a short circuit. Therefore, it is also called short circuit
current I,,.

a a
Linear — 1
circuit l I Iy () Ry g

0
0

Fig 5.6.2 Equivalence of short circuit current and Norton current

Figure 5.6.2 illustrates that if we replace the load
by a short circuit, then current flowing through this short
circuit will be same as Norton current Iy

Iy = I
The procedure of obtaining Norton current is given in the
following methodology

l IN: Isc

CHAPTER 5
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METHODOLOGY
1. Replace the load with a short circuit.

2. Define the short circuit current, I, through load
terminal.

3. Obatin I, using any method (KCL, KVL, nodal
analysis, loop analysis).

4. The Norton current is Iy = I,.

If a circuit contains dependent sources only, i.e. there is no
independent source present in the network then the short
circuit current or Norton current will simply be zero.

5.6.2 Norton’s Resistance

Norton resistance is the input or equivalent resistance
seen at the load terminals when all independent sources
are set to zero(voltage sources replaced by short circuits
and current sources replaced by open circuits) i.e. Norton
resistance is same as Thevenin’s resistance

Ry = Rm,

So, we can obtain Norton resistance using same
methodologies as for Thevenin resistance. Dependent
and independent sources are treated the same way as in
Thevenin’s theorem.

What are the values of equivalent Norton current source
(Iy) and equivalent resistance (Ry) across the load terminal
of the circuit shown in figure 7

Iy Ry
(A) 10A 20
(B) 10A 90
(C) 3.33A 90
(D) 6.66 A 20

Norton Current(short circuit current):
Short circuit current across terminal a-b is obtained by

205
Ry or R,
10 A

Qa
60 30Q Load

b

10 A

6 2 3Q lIN
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using the methodology.
For simplicity circuit can be redrawn as show below

6 GDIOA §3Q

!

Iy = ﬁ (10) (Current division)

=3.33A
Norton’s equivalent resistance : a
To obtain the Norton resistance, set independent source to
zero(open circuit the 10 A current source) 60 30 2
Ry =6+3=9Q
Hence (C) is correct option.

In the following circuit, what are the values of Norton
equivalent current and resistance across terminal a-b 7 /{ 60,

+
(A) 6A, 120 (B) 3A,120Q 1LY
(C) 2A,80Q (D) 3A, 80 GACD §IOQ R,

Norton current (short circuit current): b
We replace load by a short circuit and calculate short
circuit current.
KCL at the top left node . 692 4
IL+1Iy=6 (1) 11
Writing KVL in the right mesh CD 6 A g 10 Q l I,
101, — 41, — 61y =0
6I$ - 6]]\]
Iz - IN
Substituting this into equation (i)
2]]\[ - 6
IN - 3 A
Norton equivalent resistance:
Since Ry = Rp,, we follow the same procedure given in

methodology-2 as for Ry,. Dependent source is present in
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the network, therefore we put a test source across load
terminal and set all independent sources to zero. (Open
circuit 6 A source)

Ry = Ry ==
By applying KVL ”
V;fest - GItest + 411 - 10-[$ — O

V;fest - 6-[15851‘, - GII - O

Vvtest - 6Itest - 6-[test =0 (Iac - Itest)
Ry = Vst = 120)
test

Hence (B) is correct option.

In the following circuit value of Norton current (Iy) and
resistance (Ry) with respect to terminals a, b are

(A) Iy=5A, Ry=509
(B) Iy=3A, Ry=509
(C) Iy=9A, Ry=1009
(D) Iy =6 A, Ry =1509

Norton current (Short circuit current)
By applying KVL
—(5—1,)40 -0+ 201, + 401, =0
—20044017,+ 201, + 401, =0
1001, = 200
I, =2A
L,=5—-1,=5—-2=3A
Norton resistance
To obtain Norton resistance we set independent source to

zero (open circuit 5 A source) and put a test source across
a,b.

Ry, = Ry = 5
Applying KVL
Viest — 401, — 401, — 201, =0

Writing node equation at top right node

5

207

41

@ 6 Q
AN

\+/ AN\N "

w003

Vtest CD Itest

30

40 Q
A'A'AY °oa
Vo
§4OQ glOOQ
201

§100 Q |}l

I,

4OQ§
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[test - % + Ix
Substituting I, = V. /100 from equation (i)

. ‘/test I/test
Les =100 * 100
— V;fest
test — 50
RTh:RN :%:509

Hence (B) is correct option.

Circuit Analysis Using Norton’s Equivalent :

As discussed for Thevenin’s theorem, Norton equivalent
is also useful in circuit analysis. It simplifies a circuit.
Consider a linear circuit terminated by a load R, as shown
in figure 5.6.4. The current I, through the load and the
voltage V, across the load are easily determined once the
Norton equivalent of the circuit at the load’s terminals is

RNg

obtained,
a
+ o
Linear — A
circuit Vi g Ry — Iy C)
b

Fig 5.6.4 A circuit with a load and its equivalent Norton circuit

Current through load R is,

_ Ry
b=p+r
Voltage across load R is,
_ _ _RiRy
V=Rl = Rp+ Ry Iy

CHAPTER 5

5.7 TRANSFORMATION BETWEEN THEVENIN & NORTON’s EQuIVALENT CIRcuUITS

From source transformation it is easy to find Norton’s and
Thevenin’s equivalent circuit from one form to another as

following
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Rpy=Ry
—AN/N —o0 O
Vi (_) Iy CD g Ry= Ry,
I —— Y O
VT}L =1 NRN IN = VTh/ R Th

Fig 5.7.1 Source transformation of Thevenin and Norton equivalents

In the circuit, the Norton equivalent current with respect
to terminal a-b is

(A) 13A
(C) 8A

(B) TA
(D) 10 A

We obtain Thevenin’s resistance across a-b and then use
source transformation of Thevenin’s circuit to obtain
equivalent Norton circuit.

Using current division

(5+1)

_ __ 6 _
b=y arn =soa(12) =724
Vi=Lx1=72V
L= BFD g9y uga

B+1)+(B+1)
Vo =5L=5x48=24V

Vin+ Vi— Vo =0

Vi, = Vo—Vi=24—-72=16.8V

Ry =0B4+1)[|(3+1) =64 =240

Thevenin’s equivalent is

(KVL)

2.4 Q
—A—o

wsv ()

e — e

209
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+VTh
3Q %19
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Norton equivalent using source transformation, is

o Q

nw(® §2.4 Q

ob

Hence (B) is correct option.

5.8 Maximum Power TRANSFER THEOREM

Maximum power transfer theorem states that a load
resistance R; will receive maximum power from a circuit
when the load resistance is equal to Thevenin’s/Norton’s
resistance seen at load terminals.

ie. R, = Ry, (For maximum power transfer)

In other words a network delivers maximum power to a
load resistance R; when Ry is equal to Thevenin equivalent
resistance of the network.

Proof :

Consider the Thevenin equivalent circuit of figure 5.8.1
with Thevenin voltage Vy, and Thevenin resistance Ryy,.
We assume that we can adjust the load resistance R;. The
power absorbed by the load, P, is given by the expression

P, = IR, (5.8.1)
and that the load current is given as,

_ Vo
I, = gt (5.8.2)
Substituting [, from equation (5.8.2) into equation (5.8.1)
V2
P =—""_2R 5.8.3
b (R, + RTh)2 t ( )

To find the value of R; that maximizes the expression for
Pp (assuming that Vp, and Ry, are fixed), we write

dP,
ar, =Y

Computing the derivative, we obtain the following

expression :

CHAPTER 5

Vi (_) v, g’RL

Fig 5.8.1 A circuit used for
maximum power transfer



CHAPTER 5 CIRCUIT THEOREMS

dP; _ Vin (R + Rm) *—2VAR, (Rr+ Rm)
R, (R.+ Rm) !
which leads to the expression

(R, + RT}L)2 — 2R, (R, + Rm) =0
or R, = Ry,

Thus, in order to transfer maximum power to a

load, the equivalent source and load resistances must be
matched, that is, equal to each other.
RL - RTh,
The maximum power transferred is obtained by
substituting R; = Ry, into equation (5.8.3)

V%h RT}L VYQ’]L 4
nax — = .24
k (R, + RTh)2 4Ry ( )
_ Vi
or, P = iR,

If the Load resistance R is fixed :

Now consider a problem where the load resistance Rj is
fixed and Thevenin resistance or source resistance R, is
being varied, then

Vi
(R + R,)?
To obtain maximum P; denominator should be

P, = R

minimum or R, = 0. This can be solved by differentiating
the expression for the load power, P, with respect to R,
instead of R;.

The step-by-step methodology to solve problems
based on maximum power transfer is given as following :

METHODOLOGY
1. Remove the load R; and find the Thevenin
equivalent voltage Vi, and resistance Ry, for the

remainder of the circuit.

2. Select R; = Ry, for maximum power transfer.

3. The maximum average power transfer can be
calculated using P.. = Vi /4Rmn.

211
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In the circuit shown below the maximum power transferred

to Ry is Py, then

(A) R, =129, Pux=12W
(B) R =38, Py =96 W
(C) R, =3Q, Ppx=48W
(D) R, =129, Ppx =24 W

Step 1: First, obtain Thevenin equivalent across R;.

Thevenin voltage : (Open circuit voltage)

6 Q 2Q
—VW——\W,

+

24 VCD Vo 49 g CD 6 A

o
O

Using source transformation

Using nodal analysis

Vin—24  Vip—24
6 t o34 =0

2V —48 =0= Vp, =24V

Thevenin resistance :

6 Q2 20

LI

I [

Ry =6Q1(]6Q =30

CHAPTER 5
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Circuit becomes as

Vi, C_) g R,

Step 2: For maximum power transfer
RL == RTh, == 3 Q
Step 3: Value of maximum power

P (V) _ (24)°
mae T AR, T 4 %X 3

Hence (C) is correct option.

=48 W

In the circuit shown, what value of R; maximizes the
power delivered to Ry ?

(A) 2862 (B) 350 Q2

(C) zero (D) 500 ©2

For maximum power transfer R; = Ry,. To obtain Thevenin
resistance set all independent sources to zero and put a
test source across load terminals.

_ Viest
RTh - ]test
Writing KCL at the top center node
Ves Ves _ 2 ‘/1 .
2tkt + : t]_k — Itest (1)
Also, Viw+ Vo, =0  (KVL in left mesh)
SO7 Vi == View

Substituting V, =— V. into equation (i)

{/tgst _|_ I/test - 2 (_ ‘/test)
2k 1k

V;est +6 Vtest - 2]test

~ View _ 210 ~
Ry = 74 = 2 kQ = 286 O

= [ test

Hence (A) is correct option.

213
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5.9 ReciProcITY THEOREM

The reciprocity theorem is a theorem which can only be
used with single source circuits (either voltage or current
source). The theorem states the following

Circuit With a Voltage Source

In any linear bilateral network, if a single voltage source
V, in branch a produces a current I, in another branch
b, then if the voltage source V, is removed(i.e. short
circuited) and inserted in branch b, it will produce a

current I, in branch a.

In other words, it states that the ratio of response(output)
to excitation(input) remains constant if the positions of
output and input are interchanged in a reciprocal network.
Consider the network shown in figure 5.9.1a and b. Using
reciprocity theorem we my write

i _V
=7 (5.9.1)
a b a
Linear Linear
v resistance I I resistive
1(-) network i ! 2¢ network
a' b’ a'

(a) (b)

Fig 5.9.1 Illustration of reciprocity theorem for a voltage source

When applying the reciprocity theorem for a voltage

source, the following steps must be followed:

1. The voltage source is replaced by a short circuit in the
original location.

2. The polarity of the voltage source in the new location
have the same correspondence with branch current,
in each position, otherwise a —ve sign appears in the
expression (5.9.1).

This can be explained in a better way through
following example.

CHAPTER 5
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In the circuit of figure (A), if I; = 20 mA, then what is the
value of current I, in the circuit of figure (B) ?

Rl R2 Rl R?
AAA A A AN
I I
36 VC_) R, oh 2 %Rs C_) 36 V
= <
Fig.(A) Fig.(B)

A) 40 mA

B) —20mA

In figure (A), Vi =36V, [[=20mA
In figure (B), Vo =36V, L="7
Using reciprocity

nW_»n
L L
SO, IQ = 11: 20 mA

Hence (C) is correct option.

In the circuit shown in fig (a) if current I, =2.5 A then
current [, and I3 in fig (B) and (C) respectively are

215
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(A)5A,10A (B) —5A, 10A
(C) 5A, —10A (D) —=5A, —10A
Il 12 IS
10V 20V 40V

Fig.(A) Fig.(B) Fig.(C)

It can be solved by reciprocity theorem. Polarity of voltage
source should have same correspondence with branch
current in each of the circuit. Polarity of voltage source
and current direction are shown below

10 _ 20 _ 40
25 L L
I, =—5A
I, =10A

Hence (B) is correct option.

Circuit With a Current Source

In any linear bilateral network, if a single current source
I, in branch a produces a voltage V, in another branch b,
then if the current source I, is removed (i.e. open circuited)
and inserted in branch b, it will produce a voltage V, in

open-circuited branch a.

L C) g R, R g v, v, g R, R3§

Fig 5.9.2 Illustration of reciprocity theorem for a current source

Again, the ratio of voltage and current remains

CHAPTER 5
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constant. Consider the network shown in figure 5.9.2a and
5.9.2b. Using reciprocity theorem we my write
nW_"mn
L, L

When applying the reciprocity theorem for a current

(5.9.2)

source, the following conditions must be met:
1. The current source is replaced by an open circuit in
the original location.

2. The direction of the current source in the new location
have the same correspondence with voltage polarity,
in each position, otherwise a —ve sign appears in the
expression (5.9.2).

Again the following example illustrated the above
concepts using a better approach

If V=2V in the circuit of figure (A), then what is the
value of V; in the circuit of figure (B) 7

35 mA ‘> §R1 R3 Vl R1 V2 R3§ C‘ 35 mA

Fig.(A) Fig.(B)

217
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In figure (A), I =35mA, V=2V
In figure (B), I, =35mA, V,=7
Using reciprocity
W_»n
L L
So, Vo = Vi=2volt

Hence (A) is correct option.

5.10 SusBsTITUTION THEOREM

If the voltage across and the current through any branch
of a dc bilateral network are known, this branch can
be replaced by any combination of elements that will
maintain the same voltage across and current through

the chosen branch.

For example consider the circuit of figure 5.10.1 .The

voltage V,, and the current I in the circuit are given as

/6 _
I@—(6+4y0_6v

10
I'=gig=14

The 6 €2 resistor in branch a-b may be replaced with

any combination of components, provided that the terminal

voltage and current must be the same.

We see that the branches of figure 5.10.2a-e are each

equivalent to the original branch between terminals a and
b of the circuit in figure 5.10.1.

ao

llA al1A+ al1A+ aTilA

20 80

4V 2V

b - b - bl

(b) (c) (d)

Fig 5.10.2 Equivalent circuits for branch ab

CHAPTER 5

10
W
+

10v(®) aggnfﬁv

b

Fig 5.10.1 A circuit having voltage
V., =6V and current /=1 A in

a

branch ab

+ +

C_‘ 6V 6V 6V 1A<D 3Q§6V G)lA 6V
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Also consider that the response of the remainder of
the circuit of figure 5.10.1 is unchanged by substituting
any one of the equivalent branches.

If the 60 € resistance in the circuit of figure (A) is to be
replaced with a current source I, and 240 €2 shunt resistor
as shown in figure (B), then magnitude and direction of
required current source would be

16 ©
AA'A%

[+ B}
s

20 VC_) 4OQ§ §GOQ 240 Qg ()I

>~ 0
=

Fig.(A) Fig.(B)

(A) 200 mA, upward
(C) 50 mA, downward

(B) 150 mA , downward
(D) 150 mA, upward

First we find the voltage and current for the branch ab,
then substitute it with an equivalent.

- 40 || 60 ] o
V= (40| 60) + 16 (20)  (using voltage division)
_ 24 -
=710 ¥ 20=12V
Current entering terminal a-b is
_V_12_
I =5 =455 =200mA

In fig(B), to maintain same voltage V=12V current
through 240 €2 resistor must be
12

Iy = 240 = 50 mA
Using KCL at terminal a, as shown
I =1Ip+ 1
200 =50 + I,

I, =150 mA, (down wards)
Hence (B) is correct option.

219
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5.11 MiLLmAN’s THEOREM

Millman’s theorem is used to reduce a circuit that contains
several branches in parallel where each branch has a voltage
source in series with a resistor as shown in figure.

a

o-—-——

gRL

< C

Fig 5.11.1 Illustration of Millman's Theorem

Mathematically
Ve =

_ViGi+ VoGo+ V3Gs+ ViGy+ ...+ V, G,

1 L
Ggq o G1+ G2+ G3++ Gn

where conductances

G, :R%,GQ:R%, G3:RL3’G4:

R, =

In terms of resistances

Gi+ Go+ Gs+ G+ ...+ G,

1
R

_ Vi/Ri+ Va/Ro+ Vi/Ry+ Vi/Ri+ ...+ ViR,

v, =

R 1

1/Ri+1/Ry+1/Rs+1/Ry+ ...+ 1/R,

The value of current I in the circuit below is equal to
(A) 100 mA (B) 10 mA
(C) 233.34 mA (D) none of these

We use Millman’s theorem to obtain equivalent resistance

and voltage across a-b.
96 40 |, —80

_ 1 _
“ Gy 1/Ri+1/Ry+1/R3+...+1/R,

o

v, _ 240 200 " 800
LS S B
240 T 200 T 800

CHAPTER 5
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144 _

5 =—28.8V

The equivalent resistance

-RM - 1

T 1 1
240 T 200 T 800

Now, the circuit is reduced as shown in figure.

988
I =465 192 = 100 mA

=96

Hence (A) is correct option.

5.12 TEeELLEGEN’S THEOREM

Tellegen’s theorem states that the sum of the power
dissipations in a lumped network at any instant is always
zero. This is supported by Kirchhoff’s voltage and current
laws. Tellegen’s theorem is valid for any lumped network
which may be linear or non-linear, passive or active, time-
varying or time-invariant.

For a network with n branches, the power summation
equation is,

kfkafk =0
k=1

One application of Tellegen’s theorem is checking
the quantities obtained when a circuit is analyzed. If the
individual branch power dissipations do not add up to zero,
then some of the calculated quantities are incorrect.

Skokoskokokok ok >k koskok
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McQ 5.1.1

McaQ 5.1.2

McQ 5.1.3

PRACTICEY.

In the network of figure for V; = V;, I = 1 A then what is the value of I,,if V, =2V, 7

5Q 1Q 4Q
A AA% lI’VV\,
1

|7
KC—) 6 O §3Q 20

(A) 2A (B) 1.5A
(C) 3A (D) 2.5A

In the network of figure, If I, = I, then V'=1V. What is the value of I if [, = 21[, ?

zmﬁ> 20
AN AN

+

ICD §12S2 §GQ 102V

(A) 1.5A (B) 2A
(C) 45A (D) 3A
The linear network in the figure contains resistors and dependent sources only.

When V, =10V, the power supplied by the voltage source is 40 W. What will be
the power supplied by the source if V,=5V 7

Linear

Network

(A) 20 W (B) 10W
(C) 40 W (D) can not be determined
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McQ 5.1.4

McCQ 5.1.5

McCQ 5.1.6

CIRCUIT THEOREMS 223

In the circuit below, it is given that when V, =20V, I, = 200 mA. What values of
I, and V; will be required such that power absorbed by Ry is 2.5 W ?

I
Linear
v Resistive R,=10 Q
Network
(A) 1A, 25V (B) 0.5A, 2V
(C) 0.5A, 50 V (D) 2A,1.25V

For the circuit shown in figure below, some measurements are made and listed in
the table.

I
Linear V. I I,
V Resistive R;
Network .14V 6A 2A
; 2. |18V 2 A 6 A
()
/

Which of the following equation is true for I, ?
(A) I;=0.6V,+ 0.4

(B) I, = 0.2V, — 0.3,
(C) I, =0.2V,+ 0.3,
(D) I, = 0.4V, — 0.61,

In the circuit below, the voltage drop across the resistance R, will be equal to

16 Q
A A'A%
Ry
16 VC) R2§16Q CD5A C_‘ 32V
'\/}E}\,
24 Q)
(A) 46 volt (B) 38 volt

(C) 22volt (D) 14 volt
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McQ 5.1.7

McCQ 5.1.8

McQ 5.1.9

McCQ 5.1.10

CIRCUIT THEOREMS CHAPTER 5

In the circuit below, the voltage V' across the 40 Q2 resistor would be equal to

2OQ§ OISO §3OQ

40 Q
ANA-
Vv
(A) 80 volt (B) 40 volt
(C) 160 volt (D) zero

In the circuit below, current I = I, + I,+ I3, where I, I, and I3 are currents due
to 60A, 30 A and 30V sources acting alone. The values of I, I, and I3 are
respectively

w

0A
[
o

4 Q
s 7

\Y

203 (Dwa  $va 3o

(A) 8A, 8A, —4A
(B) 12A,12A, —5A
(C) 4 ,—1A
(D)2A 2A, —4A

The value of current I flowing through 2 €2 resistance in the circuit below, equals to

l]
@ Dsa 20

(A) 10A (B) 5 A
(C)4A (D) zero

In the circuit below, current I is equal to sum of two currents I, and I,. What are
the values of I, and I, 7
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McaQ 5.1.11

McCQ 5.1.12

MCQ 5.1.13

CIRCUIT THEOREMS 225
I
N
6 12 Q
18V
Iy /Y
9A<) N\
14 Q) 35 Q

(A) 6A, 1A
(B) 9A, 6A
(C) 3A,1A
(D) 3A, 4A

A network consists only of independent current sources and resistors. If the values
of all the current sources are doubled, then values of node voltages
(A) remains same

(B) will be doubled
(C) will be halved
(D)

D) changes in some other way.

Consider a network which consists of resistors and voltage sources only. If the
values of all the voltage sources and doubled, then the values of mesh current will
be

In the circuit shown in the figure below, the value of current I will be be given by

6V %49
gGQ
4 Q

6 Q C,QA ;
'

(A) 1.5A (B) —0.3 A
(C) 0.05 A (D) —0.5 A
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Mca 5.1.14 What is the value of current I in the following network ?

20V

4 Q

W

10 2 A

ARE

1
24\/(_) §4Q §4Q
(A) 4 A (B) 6 A
(C) 2A (D) 1A

Mca 5.1.15 In the given network if ¥} = V5, = 0, then what is the value of V, 7

4Q§ § CD4AV2 gm

1

cascl
103 203 29%%

(A) 3.2V (B) 8V
(C) 5.33V (D) zero

McQ 5.1.16 The value of current I in the circuit below is equal to

GVC_D §6§2 3A §4Q

(A) 2A (B) 1A
(C) 2A (D) 4 A

McQ 5.1.17 What is the value of current I in the circuit shown below 7
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CHAPTER 5
J 40V
A=
6 Q ~ 4Q
48V g 3Q 4 Qg 24V
(A) 85A (B) 4.5 A
(C)1.5A (D) 5.5 A
McQ 5.1.18 In the circuit below, the 12V source
4 A
o
)
AA'A% =
A /
@ ia Sie
(A) absorbs 36 W (B) delivers 4 W
(C) absorbs 100 W (D) delivers 36 W
Mca 5.1.19  Which of the following circuits in equivalent to the circuit shown below ?
2Q
—AW\—oa
06
L o b
20 —oa
a
(A) 4 (B) 3L 20
b —!
—oa
(C) 31, §2 Q (D) None of these
Lo b
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Mca 5.1.20 Consider a dependent current source shown in figure below.

—o

The source transformation of above is given by

5Q
° —AM—o
(A) 201, t> §5 0 (B) 20[x<;>
O ————0
5Q
—AM—o
(C) 201, i> (D) Source transformation does
not applicable to dependent
- ° sources

Mca 5.1.21 Consider a circuit shown in the figure

SACD gGQ §3Q CD9A

b
AN @J

10 © 8V

Which of the following circuit is equivalent to the above circuit ?

o a o a

(A) 18VC_> §18Q (B) 1AGD §18Q

obh o)
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McaQ 5.1.22

McCaQ 5.1.23

McCQ 5.1.24
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18 O 18 O
—A\N\——o0 —N\N—o

(C) 18 VC_) (D) 34 VC_)
_ - )

How much power is being dissipated by the 4 k{2 resistor in the network 7

6 kQ 8 k2
AN AN
18 VC_) 3kQ§ §4 kQ
2 kO
AN
(N
/
3 mA
(A) 0w (B) 2.25 mW
(C) 9mW (D) 4 mW

For the circuit shown in the figure the Thevenin voltage and resistance seen from
the terminal a-b are respectively

A AAY oa
24 Q

@ Qs

oh
(A) 34V, 09Q (B) 20V, 24Q
(C) 14V, 00 (D) =14V, 24Q
The Thevenin equivalent resistance Ry, between the nodes a and b in the following
circuit is
12 Q
AN 0a

ov@® 10a(

ob
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McQ 5.1.25

MCQ 5.1.26

McaQ 5.1.27

CIRCUIT THEOREMS CHAPTER 5

In the following circuit, Thevenin voltage and resistance across terminal a and b
respectively are

20 15 Q
1wv(®)

30 Q 10 Q
(A) 10V, 189 (B) 2V, 180
(C) 10V, 18.67 Q2 (D) 2V, 18.67Q

The value of Ry, and Vi, such that the circuit of figure (B) is the Thevenin
equivalent circuit of the circuit shown is figure (A), will be equal to

30 49 Ry,
VWV MA—oa —AMW—oa
24 V (_) 6 Qg CD 6 A Vi, (_)
ob L o)
Fig.(A) Fig.(B)
(A) RT}L:6Q, VTh:4V (B) RThZGQ, VT]Z:28V
(C) RT}L - 2 Q, VTh - 24 V (D) RTIL - 10 Q, VTh - ]_4 V

What values of Ry, and Vg, will cause the circuit of figure (B) to be the equivalent
circuit of figure (A) ?

. 40 Ry
Ggg %O,Q #)zmv gm Vi 30
b b
Fig.(A) Fig.(B)
(A) 24Q, —24V (B) 30,16V

(C) 109, 24V (D) 10Q, =24V
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Common Data for Q. 34 to 35 :

Consider the two circuits shown in figure (A) and figure (B) below

a b
a
R, 10
24V 6Q§ 6V 129§ By SAGD
0 , 16V
Fig.(A) Fig.(B)

Mca 5.1.28 The value of Thevenin voltage across terminals a-b of figure (A) and figure (B)
respectively are
(A) 30V, 36V (B) 28V, —12V
(C) 18V, 12V (D) 30V, —12V

Mca 5.1.29 The value of Thevenin resistance across terminals a-b of figure (A) and figure (B)
respectively are
(A) zero, 3Q (B) 99,16 Q
(C)2Q,30Q (D) zero, 16 2

Statement for linked questions

Consider the circuit shown in the figure.

2 a(D

Mca 5.1.30 The equivalent Thevenin voltage across terminal a-b is
(A) 31.2V (B) 19.2V

(C) 16.8V (D) 24V

Mca 5.1.31  The Norton equivalent current with respect to terminal a-b is
(A) 13A (B) TA
(C) 8A (D) 10 A
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McaQ 5.1.32

McQ 5.1.33

MCQ 5.1.34

McQ 5.1.35

CIRCUIT THEOREMS CHAPTER 5

For a network having resistors and independent sources, it is desired to obtain
Thevenin equivalent across the load which is in parallel with an ideal current
source. Then which of the following statement is true ?

(A) The Thevenin equivalent circuit is simply that of a voltage source.

(B) The Thevenin equivalent circuit consists of a voltage source and a series resistor.

e evenin equivalent circuit does not exist bu e Norton equivalent does
C) The Th in equivalent circuit d t exist but the Nort quivalent d
exist.

(D) None of these

The Thevenin equivalent circuit of a network consists only of a resistor (Thevenin
voltage is zero). Then which of the following elements might be contained in the
network 7

(A) resistor and independent sources

(B) resistor only
(C) resistor and dependent sources
(D)

D) resistor, independent sources and dependent sources.

In the following network, value of current I through 6 2 resistor is given by

4Q

(A) 0.83 A (B) 2A
(C) 1A (D) —0.5A

For the circuit shown in the figure, the Thevenin’s voltage and resistance looking
into a-b are

30 30
A AAY AMN—o a

2vz<t> 603V, GDlA

o

(A) 2V, 30 (B) 2V, 20Q
(C) 6V, -9 (D) 6V, —30Q
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McQ 5.1.36  For the circuit below, what value of R will cause I=2A ?

21
6 Q2 ’

< Ve
18V 10 R

(A) 2 / 3
(B) 4
(C) zero
(D) none of these
Mca 5.1.37 For the following circuit, values of voltage V for different values of R are given in
the table.
R V
+
Unknown v R 30 6V
Circuit
o 8 Q 8V

The Thevenin voltage and resistance of the unknown circuit are respectively.

(A) 14V, 40Q
(B) 4

(C) 14 V
(D) 10V, 29

Mca 5.1.38 In the circuit shown below, the Norton equivalent current and resistance with
respect to terminal a-b is

24 Q)
AN oa
20v(®) D24
oh
17
(A) A 00 (B) 2A, 24Q
(C) =T A, 240 (D) —2A, 24Q

6
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McQ 5.1.39

McCQ 5.1.40

McaQ 5.1.41
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The Norton equivalent circuit for the circuit shown in figure is given by

L 4 o
20 o
o
20
o b
o o
4) 2520 §2Q ®) 152D §2Q
ob ob
0 0
(C) 25A ‘D §4Q (D) 15A ,D §4Q
ob ob

What are the values of equivalent Norton current source (Iy) and equivalent
resistance (Ry) across the load terminal of the circuit shown in figure ?

10 A
a
60 30Q Load
b
Iy Ry
(A) 10A 20Q)
(B) 10A 90
(C)  3.33A 90
(D)  6.66 A 20

For a network consisting of resistors and independent sources only, it is desired to
obtain Thevenin’s or Norton’s equivalent across a load which is in series parallel
with an ideal voltage sources.

Consider the following statements :

1. Thevenin equivalent circuit across this terminal does not exist.

2.  The Thevenin equivalent circuit exists and it is simply that of a voltage source.

3.  The Norton equivalent circuit for this terminal does not exist.
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McCQ 5.1.42

MCQ 5.1.43

McCaQ 5.1.44
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Which of the above statements is/are true 7
(A) 1 and 3 (B) 1 only
(C) 2 and 3 (D) 3 only

For a network consisting of resistors and independent sources only, it is desired to
obtain Thevenin’s or Norton’s equivalent across a load which is in series with an
ideal current sources.

Consider the following statements

1. Norton equivalent across this terminal is not feasible.

2. Norton equivalent circuit exists and it is simply that of a current source only.
3. Thevenin’s equivalent circuit across this terminal is not feasible.

Which of the above stat